NISTIR 6774

Workshop On Fire Testing Measurement Needs: Proceedings

William Grosshandler (Editor)

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NISTIR 6774

Workshop On Fire Testing Measurement Needs: Proceedings

William Grosshandler (Editor) Building and Fire Research Laboratory

August 2001

U.S. Department of Commerce

Donald Evans, Secretary

National Institute of Standards and Technology Dr. Karen H. Brown, Acting Director

I. REPORTS FROM BREAKOUT GROUPS

Marc Janssens, Department of Engineering Technology University of North Carolina at Charlotte, 9201 University City Boulevard Charlotte, NC 28223-0001

Richard Gann, Building and Fire Research Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899

> Frederick Mowrer, Dept. of Fire Protection Engineering University of Maryland, College Park, MD 20742

M. Janssens, UNC-Charlotte

The William States Lee College of Engineering Department of Engineering Technology Fire Safety Engineering Technology Program

WORKSHOP ON FIRE TESTING MEASUREMENTNEEDS

Green Breakout Group Report

Building and Fire Research Laboratory

National Institute of Standards and Technology

Gaithersburg, MD – June 18-19, 2001

Green Breakout Group

- M. Janssens (UNCC)
- K. Haile (HPVA)
- E. Krawiec (CPSC)
- D. Martucci (US Testing)
- W. Pitts (NIST)
- P. Unger(A2LA)
- S. Fischer(CBHF)
- P. Hunsberger (AWI)
- R. Lawson (NIST)
- W. Parker (Consultant)
- N. Stamp (ITS)
- J. Urbas (PFL)

Most Significant Fire Test Methods

- ASTM E 84 INFPA 255 tunnel test
- ASTM E ■19 NFPA 251 furnace test and variants

Most Common Fire Test Methods

- ASTM E 84 / NFPA 255 tunnel test
- ASTM E 119 INFPA 251 furnace test and variants

Calibration Practices in Industry

- Driven by quality system
- Calibration section of test standards needs review

Uncertainty Limits of the Results

- Concept of uncertainty does not apply to tests that do not produce results in engineering units
 - use repeatability, from tests on SRM's if available
 - use reproducibility, if replicate testing is not feasible
- Uncertainty limits always need to be specified for data in engineering units
- Product certification is not always required
- Unlimited lifetime of test reports
- Accreditation usually only covers standard testing
- Accreditation usually does not cover tests that provide input data for an engineering analysis to demonstrate code-equivalency or in support of performance-baseddesign

M. Janssens, UNC-Charlotte

New Measurements in Old Methods

- Hardto convince customers of the benefit
- Additional small-scale tests to obtain material properties are very useful for modeling (see later)

Role of Numerical Simulations

■ Itwould be useful to develop models that simulate the predominant fire tests → facilitate the development of a parallel system to qualify materials, products, and systems and the transition to performance-basedcodes

ure jäleses

Implications of Global Markets

■ Retesting overseas is usually required

Needs of AHJ's

- Education
 - Awareness of uncertainties associated with measurements
 - Preparefor review of performance-baseddesigns

Needs of Manufacturers

- Need to go beyond what the codes require (liability)
- Fire testing has not kept up with advances in material science

NIST as a Resource

- Review and revision of calibration sections in fire test standards
- Calibration services and SRM's (uncertainty)
- Development of proficiency programs for test procedures that provide data in engineering units
- Development of numerical models to simulate the most common and most significant test procedures
- Support of AHJ's
 - Education
 - Review of performance-baseddesigns